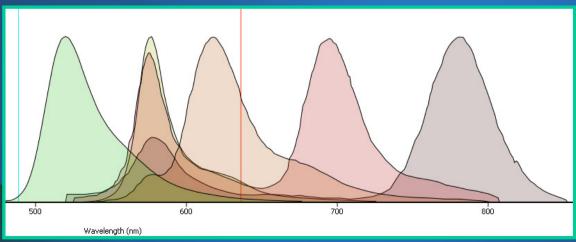
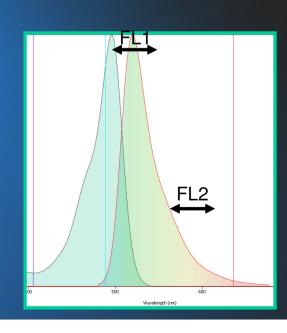


We're better together

Comment préparer et réaliser un multimarquage?

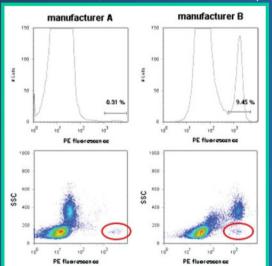

Jaen Olivier, PhD
ojaen@beckmancoulter.com
Cellular Analysis application specialist
Beckman Coulter France

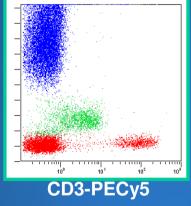


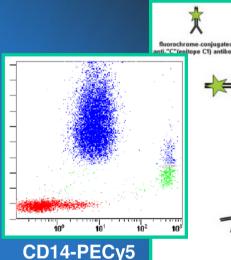
Introduction

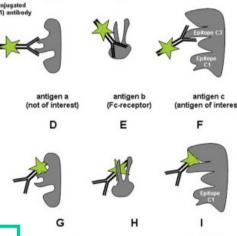
- La cytométrie multi-couleurs (>4) prend de plus en plus d'importance dans les analyses en cancérologie (Hadrup SR, *Nat Methods*, 2009;6:520-8), en immunologie (Perfetto SP et col, *Nat Rev Immunol*, 2004;4:648-55), en hématologie (Craig FE et col, *Blood*, 2008;111:3941-67)...
- A partir du moment ou l'échantillon est rendu mono dispersé, lumineux
- Interrogations physiologiques (Heimbeck I et col, Cytometry, 2010;77A:823-30) et physiopathologiques (Kostense S et col, Blood, 2002;99:2505-11), autour du phénotype cellulaire (Expression CDx); mais aussi autour de leurs fonctionnalités (dégranulation, apoptose, activation caspases, potentiel mitochondrial, dérivés actifs de l'oxygène, sécrétion cytokines, prolifération)
- L'augmentation du nombre de couleurs est rendue aisée grâce au développement simultané de nouveaux cytomètres, de nouveaux fluorochromes et de nouveaux logiciels
- Cette multiplicité de couleurs requiert des compensations de fluorescence inter-fluorochromes

Cas de 5 fluorochromes

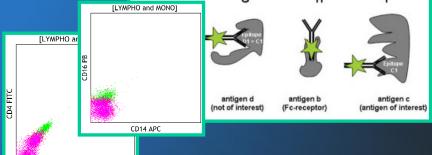


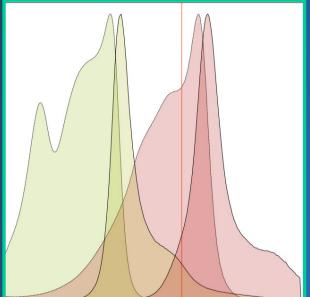


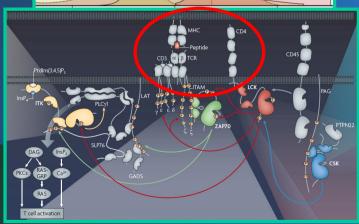

Introduction

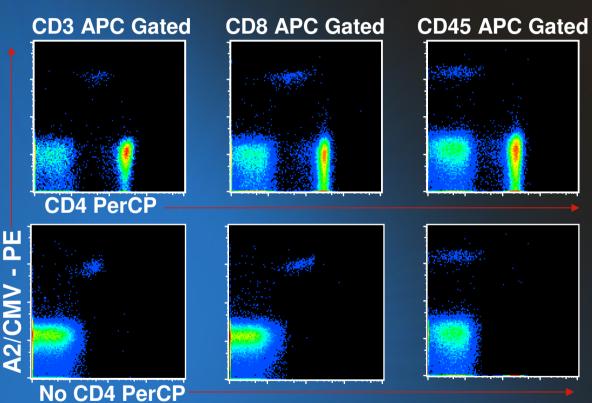

- Les compensations peuvent engendrer une diminution de la sensibilité d'un détecteur et réduire la capacité de mesure d'un signal faible (Maecker HT, Cytometry, 2004; 62A:169:173)
- De plus, en multi-couleur, il y a plus de risques de fixation non spécifiques des fluorochromes; ex : Cyanine et Alexa sur les cellules B, monocytes et cellules myeloïdes (Baumgarth N et col, *J Immunol Meth*, 2000;243:77-97; Hulspas R et col, *Cytometry*, 2009;76B:355-64; Internal Observations, Beckman Coulter Inc)

• Fixations non spécifiques sous différentes formes (Hulspas R et col, *Cytometry*, 2009;76B:355-64; Internal Observations, Beckman Coulter Inc)



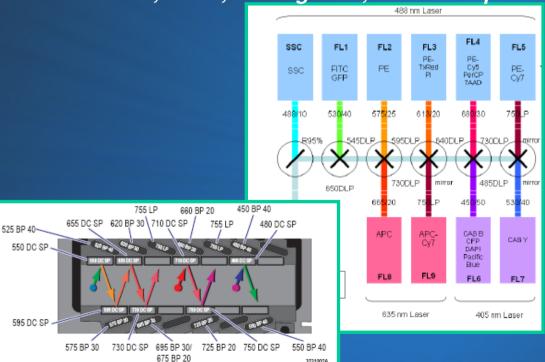

- Différence d'auto-fluorescence entre les différentes populations en fonction des excitations et longueur d'ondes mesurées, granules, culture (Monici M et col, *Biotechnol Annu Rev*, 2005;11:227-56)
- Possibilité réduire par DTT, bleu trypan, crystal violet, galactopyranoside (Hulspas R et col, *Cytometry*, 2009;76B:355-64)

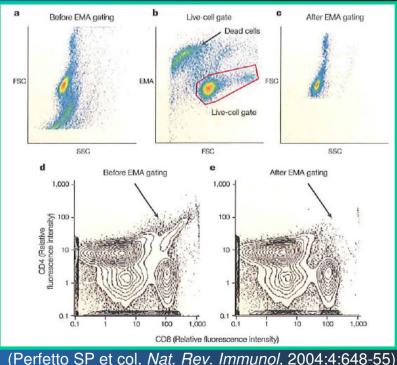




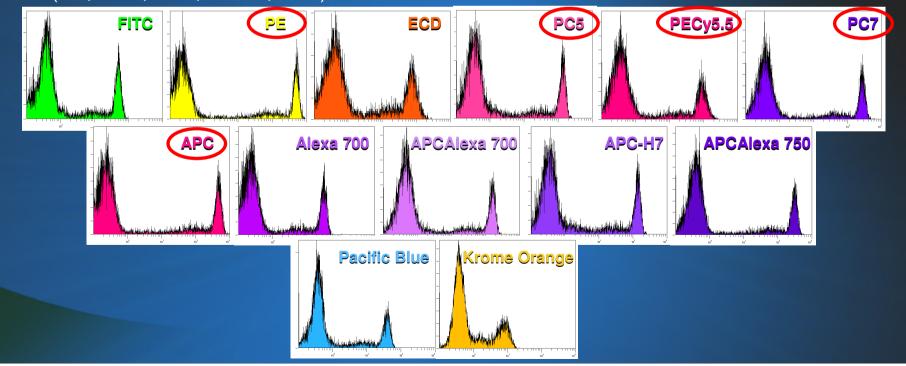
Introduction

• Risque de FRET à cause de la proximité des antigènes (Sakeenah Hicks, Chris Ibegbu, John Altman, February 19, 2002)


• Encombrement stérique, absence de marquage


Image extraite poster, Joseph Lin et Arthur Weiss, Nat Rev Immunol

- Quelle est la question posée?
- Liste d'antigènes que l'on veut suivre, marqueur gating?
- Quel instrument : caractéristiques lasers, banc optique
- Liste des fluorochromes
- Quel échantillon, préparation?
- Fréquence populations recherchées? Nombre évènements

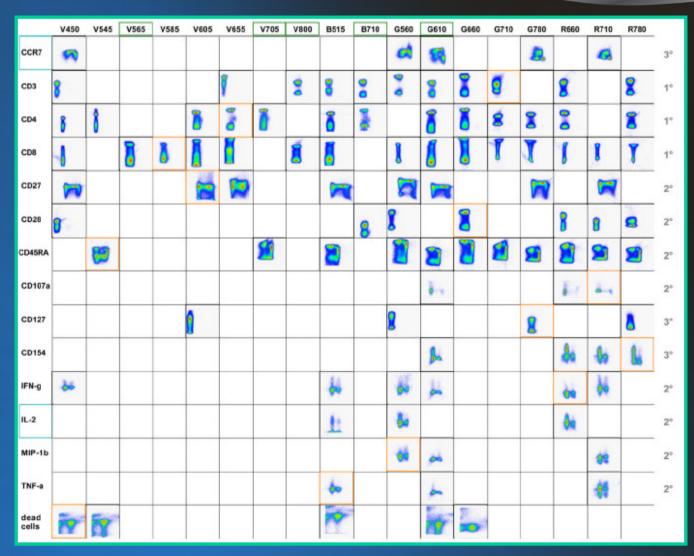

 Ajout marqueur viabilité (7-AAD, IP, EMA, autre) si f<1% totale, si activées, inhibées, Ficoll, décongelées, traitement pouvant induire la mort cellulaire

- Liste antigènes/fluorochromes
- Classement (Mahnke Y et Roederer M, Clin Lab Med, 2007,27:469-87)
 - ✓ Antigènes primaires : marqueurs connus, forts, constants, bimodaux (ex : CD3, CD19)
 - ✓ Antigènes secondaires : marqueurs connus, +/- forts, continuum (ex : CD45R0, CD38)
 - ✓ Antigènes tertiaires : marqueurs inconnus, faibles, peu représenté (ex : CD25, CCR, CXCR)
- Se procurer le maximum d'anticorps dirigés contre Antigène primaire, un peu moins pour antigènes secondaires et ceux disponibles pour les tertiaires
- Commencer par choisir les fluorochromes les plus brillants pour les antigènes tertiaires (PE, APC, PC5, PC5.5, PC7)

- Exemple : Identification Lymphocytes Treg dans les biopsies et les sang périphériques de patients atteints de polyarthrite rhumatoïde
- Q : Y-a-t-il des différences de fréquence et de fonction de Treg, chez des patients traités par la molécule X, et des patients traités par Y?
- Machine Gallios 10 couleurs 3 lasers
- Cellules rares sang, et biopsie, décongelées, activées : marqueur de viabilité 7-AAD FL4
- Phénotype: CD3+CD4+CD25+CD127^{low} foxp3+CD279+/-CD45R0+/- CD45RA+/- IL10+/-TGFβ+/-
- Faire un tableau marqueurs vs fluorochromes disponibles
- Association antigènes tertiaires avec les anticorps couplés aux fluorochromes les plus brillants ex : IL10-PE ou APC/TGFβ-PE ou APC/CD279-PE ou AlexaFluor647 ou PC7
 - ✓ Bilan des places libres : FL3-7-8-9-10
- Association antigènes secondaires avec Acs
- Ex: CD25FITC/ECD/AA700/AA750/PB-CD127FITC/AA700-CD45RAFITC/PB/ECD/AA750-CD45R0FITC/ECD
 - ✓ Bilan des places libres : FL8-10
- Association antigènes primaires avec Acs CD3 AA750 ou KrO CD4 KrO ou AA750
 - ✓ Possibilité de DUMP Channel avec 7AAD exclusion des cellules CD3+/ CD4- TCD8 et NKT ajout CD8PC5 et CD56PC5

• Tube première intention :

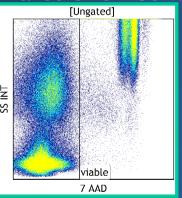
CD25FITC/IL10-PE/CD45R0-ECD/7AAD+CD8-PC5+CD56-PC5/CD279-PC7/TGFβ-APC/CD127-AA700/CD3-AA750/CD45RA-PB/CD4-KrO

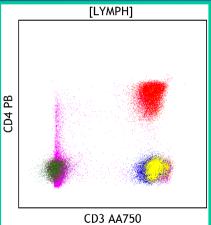

- Choix premières intentions doivent être réalisés selon le phénotype que l'on cherche
 - ✓ ce que l'on doit voir
 - ✓ ce qui est co-exprimé
 - ✓ les intensités de fluorescences relatives, éviter marqueur dim avec un marqueur fort qui fuit beaucoup dans le canal du marqueur dim
 - ✓ les fuites des fluorochromes
 - √ les caractéristiques des <u>machines</u>
- Procurer vous les marqueurs primaires et secondaires dans plusieurs couplages, ils pourront servir aux compensations, apporteront la souplesse aux futurs manips
- Validation technique
- Une fois les anticorps réunis, réaliser des mono-marqués sur un échantillon représentatif (ou positif) de ce que vous voulez analyser en multi-couleur, afin d'apprécier sa qualité :
 - ✓ Ecart Neg/Pos
 - ✓ Accrochage non spécifique
 - ✓ Fuite
 - ✓ Réaliser une titration (la dilution : <u>Ratio de MFI Pos/Neg</u>est le meilleur ou Stain Index)
 - ✓ Représenter les données dans un tableau Marqueur vs détecteur

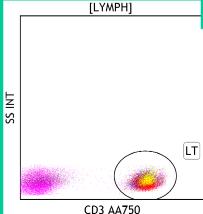
Approche Empirique : la pratique

Choisir les couplages:

- -Tertiaire vers primaire
- -Meilleure séparation
- -Moins d'accrochage possible
- -Utilisation de marqueurs de gating pour antigène rare/peu de cellules+
- -Possibilité d'identifier plusieurs candidats qui vont générer différentes combinaison de tubes à tester
- -Possibilité d'optimisation...

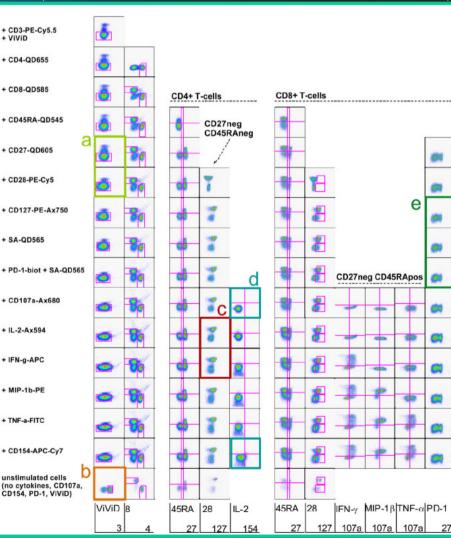



(Mahnke Y et Roederer M, Clin Lab Med, 2007,27:469-87)

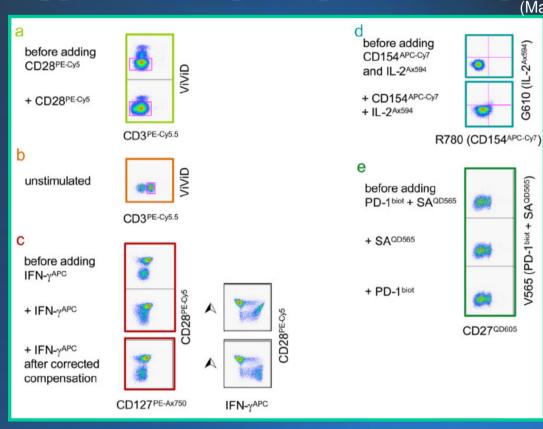


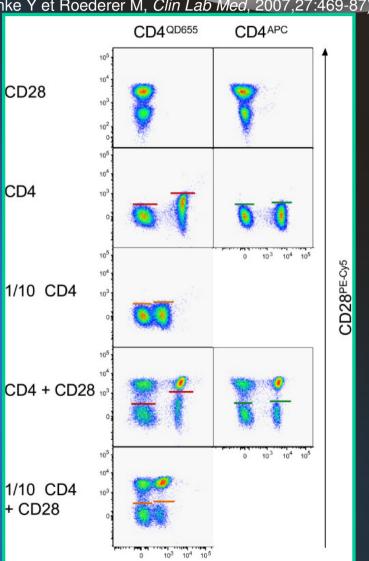
Approche Empirique : la pratique

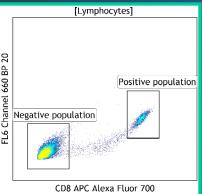
- Test des combinaisons sélectionnées
- Incuber cellules avec anticorps/marqueur viab connus (les primaires)
- Ex: 7-AAD/CD3-AA750/CD4-KrO et 7-AAD/CD3-KrO/CD4-AA750 et même chose avec CD8-PC5 +/- CD56-PC5

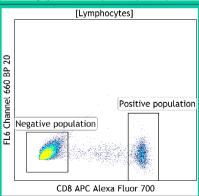


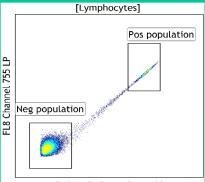
Ajout des anticorps dans ordre de gating

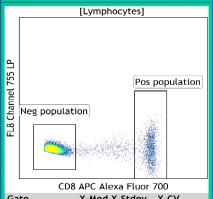

Possibilité de tester les alternatifs au fur et à mesure de la création

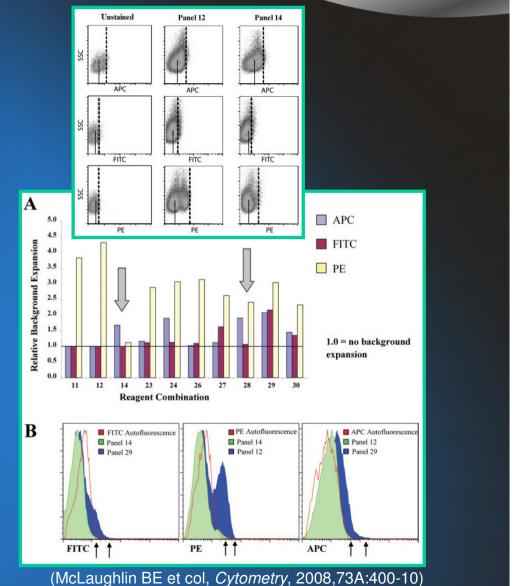

(Mahnke Y et Roederer M, Clin Lab Med, 2007,27:469-87)


Approche Empirique : les problèmes (Mahnke Y et Roederer M, Clin Lab Med, 2007,27:469-87)

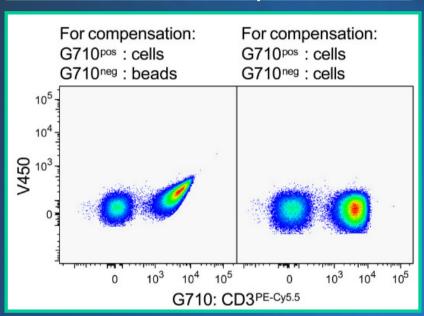


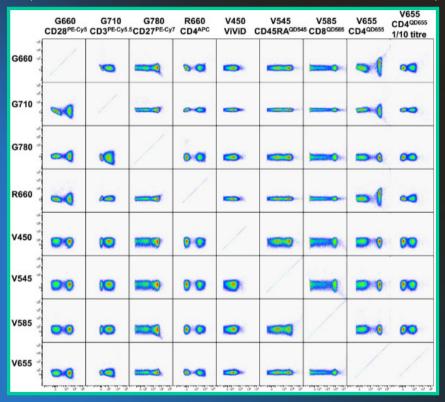

Approche Empirique : la sensibilité


CD8 APC Alexa Fluor 700					
Gate	X-Med	X-Stdev	X-CV		
All	0,25	13,77 28	35,20		
Negative population	0,22	0,16	51,41		
Positive population	45,64	9,51	20,72		
Gate	Y-Med	Y-Stdev	Y-CV		
All	0,20	0,61 14	49,27		
Negative population	0,18	0,15	59,01		
Positive population	2,12	0,46	21,45		


CD8 AP	CD8 APC Alexa Fluor 700						
Gate	X-Med	X-Stdev	X-CV				
All	0,25	13,77	285,20				
Negative population	0,22	0,15	60,08				
Positive population	45,65	9,47	20,62				
Gate	Y-Med	Y-Stdev	Y-CV				
All	0,17	0,20	96,65				
Negative population	0,17	0,14	69,74				
Positive population	0,17	0,24	133,48				

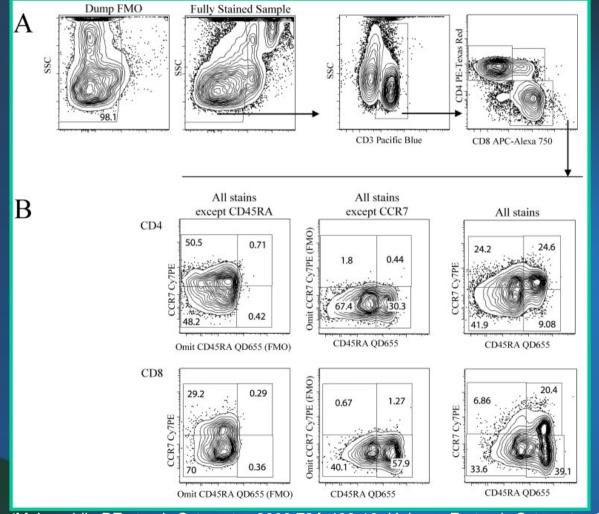
CD8 APC Alexa Fluor 700					
X-Med	X-Stdev X-CV				
0,25	13,77 285,20				
0,22	0,15 60,88				
45,44	10,17 22,41				
Y-Med	Y-Stdev Y-CV				
0,29	8,03 271,97				
0,27	0,14 47,14				
26,64	5,99 22,54				
	X-Med 0,25 0,22 45,44 Y-Med 0,29 0,27	X-Med X-Stdev X-CV 0,25 13,77 285,20 0,22 0,15 60,88 45,44 10,17 22,41 Y-Med Y-Stdev Y-CV 0,29 8,03 271,97 0,27 0,14 47,14			

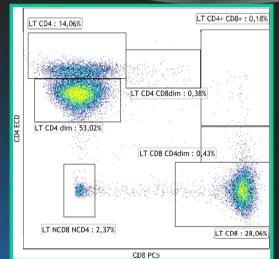

CD8 APC Alexa Fluor 700						
Gate	X-Med	X-Stdev X-CV				
All	0,25	13,77 285,20				
Neg population	0,22	0,15 60,88				
Pos population	45,59	9,67 21,12				
Gate	Y-Med	Y-Stdev Y-CV				
All	0,13	0,29 204,41				
Neg population	0,13	0,13 94,48				
Pos population	0,13	0,81 537,52				

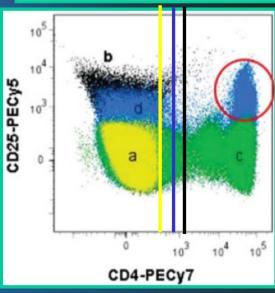


Le test : pensez aux contrôles

Contrôle des compensations

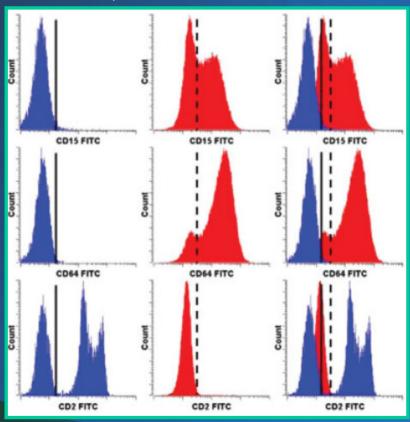

(Mahnke Y et Roederer M, Clin Lab Med, 2007,27:469-87)

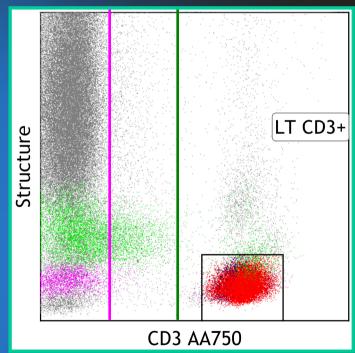




Le test : pensez aux contrôles

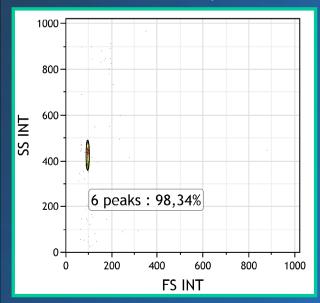
Placement des seuils de positivités : FMO

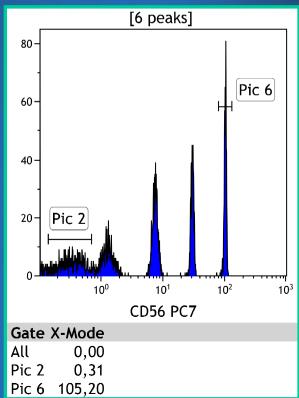


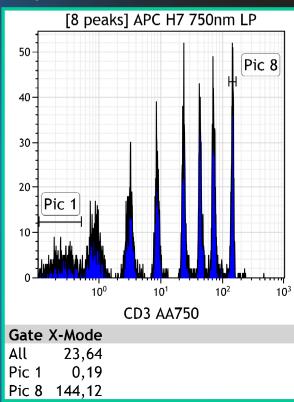

(McLaughlin BE et col, Cytometry, 2008,73A:400-10; Hulspas R et col, Cytometry, 2009;76B:355-64)

Le test : pensez aux témoins

 <u>Témoin négatif interne</u>: cellules qui n'expriment pas le marqueur, mais qui ont la même auto fluorescence et accrochage que celle d'intérêt (sauf si minimisé)

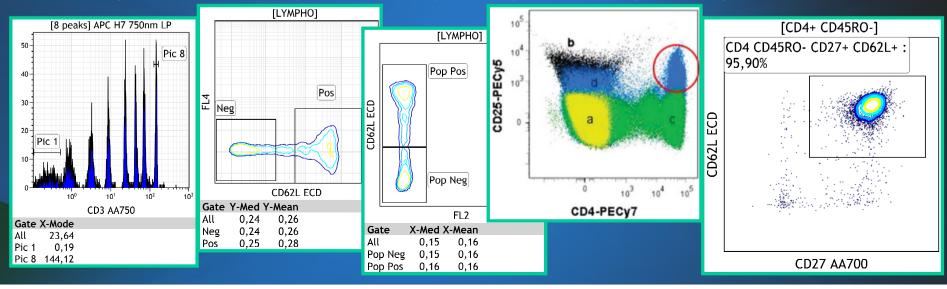



(Hulspas R et col, *Cytometry*, 2009;76B:355-64)



Repères pour le cytomètre

- Une fois les réglages réalisés, penser à prendre des repères de setting pour le cytomètre, ne pas appliquer de compensations
- Ex: passage des billes 6 peak (A79017), 8 peak (A71145) et FlowSet Pro (A63492) transferts de protocoles et standardiser dans le temps



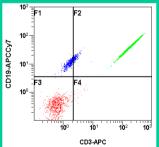
Les étapes de la manip

- Passage des billes de contrôle qualité (ex : FlowCheck Pro)
- Passage des billes de vérification des settings (ex : 6 peak)
- Passage des monomarqués pour vérification des compensations et ou réajustement en ré-analyse (attention au conditionnement, utilisation autre du même fournisseur)
- Passage des tubes FMO (positionnement seuils et gates)
- Passage des témoins positifs et négatifs de la manip
- Passage des échantillons à explorer
- Récupérer les data, puis ré-analyse depuis votre post déporté

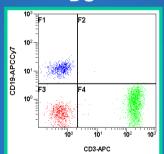
Remarques

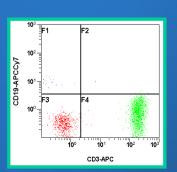
Three Lot Comparison of PC5

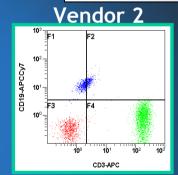
Emission Wavelength (nm)

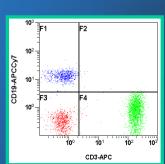

Finished Tandem Dye

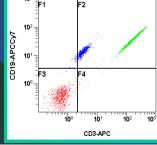
Tandem variable d'un lot à un autre






Couplage optimisé pour réduire les fuites

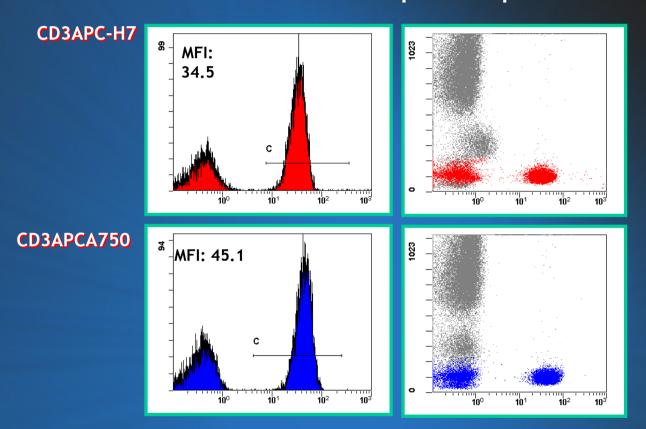

Compensation Matrix						
	FL1	FL2	FL3	FL4	FL5	
FL1		0.0	0.0	0.0	0.0	
FL2	0.0		0.0	0.0	0.0	
FL3	0.0	0.0		0.0	0.0	
FL4	0.0	0.0	0.0		10.2	
FL5	0.0	0.0	0.0	23.1		


Fluorescence Intensity

Faire une compensation pour chacun des fournisseurs

-Lot # 3021-101 -Lot # 1828-47

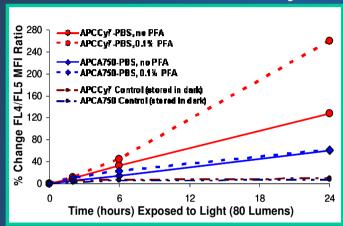
V	endor	· 2
10 ³ F1	F2	



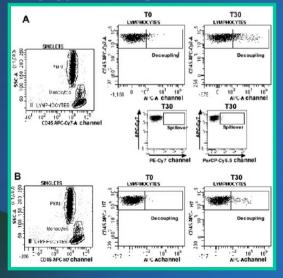
Compensation Matrix						
	FL1	FL2	FL3	FL4	FL5	
FL1		0.0	0.0	0.0	0.0	
FL2	0.0		0.0	0.0	0.0	
FL3	0.0	0.0		0.0	0.0	
FL4	0.0	0.0	0.0		20.5	
FL5	0.0	0.0	0.0	23.1		

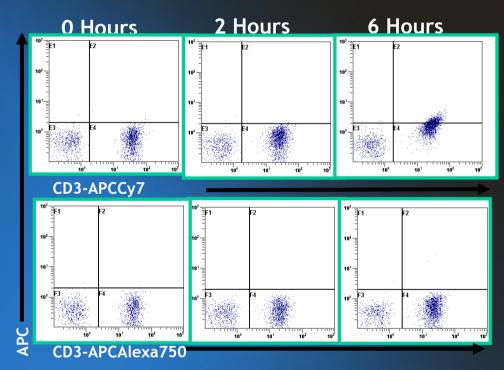
Remarques

Problèmes de fixation non spécifique



Possibilité de neutraliser par ajout de sérum, FcBlock

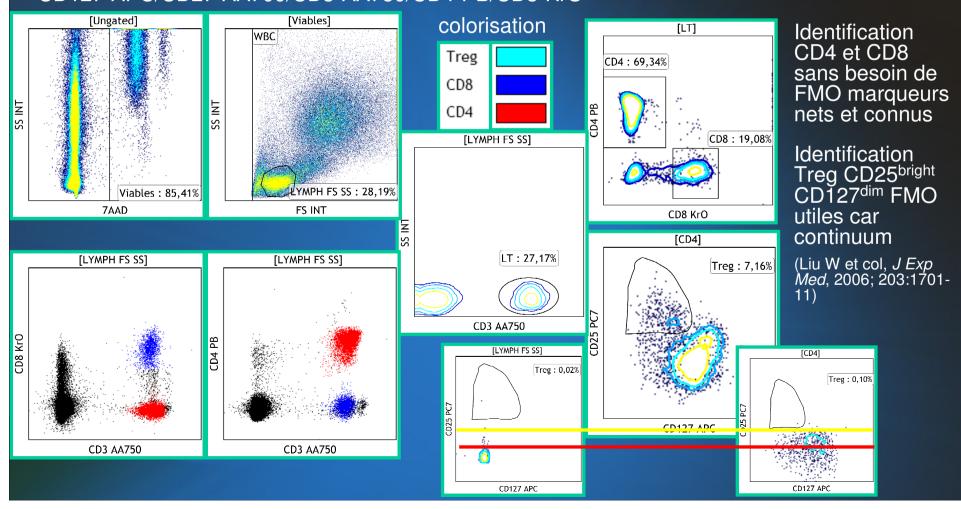



Remarques

Attention à l'APC-Cy7

Et à l'APC-H7

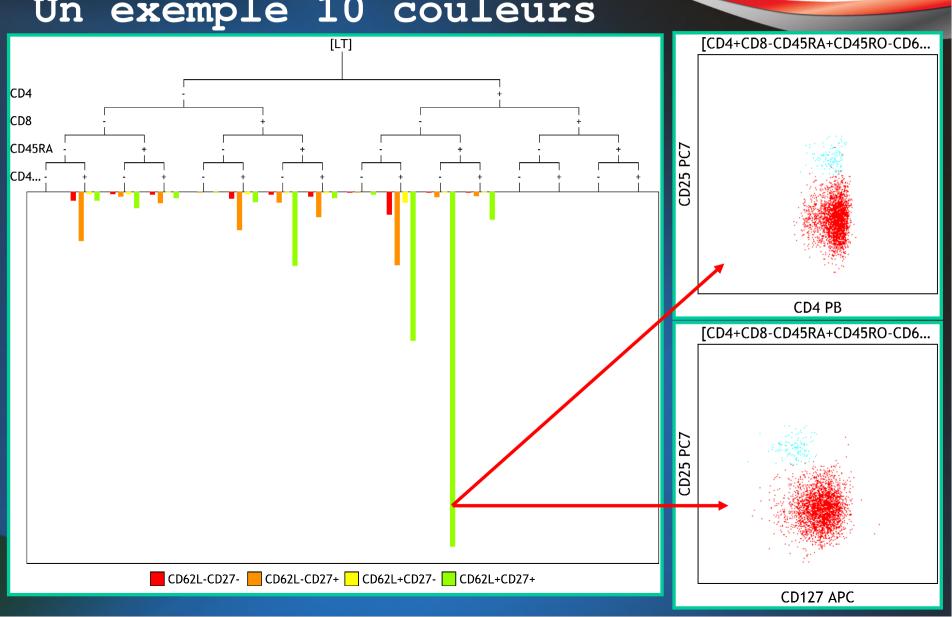
Dégradation de l'APC-Cy7 et H7 par réaction enzymatique d'origine cellulaire...


(Le Roy C et col, *Cytometry*, 2009;75A:882-90)

Un exemple 10 couleurs

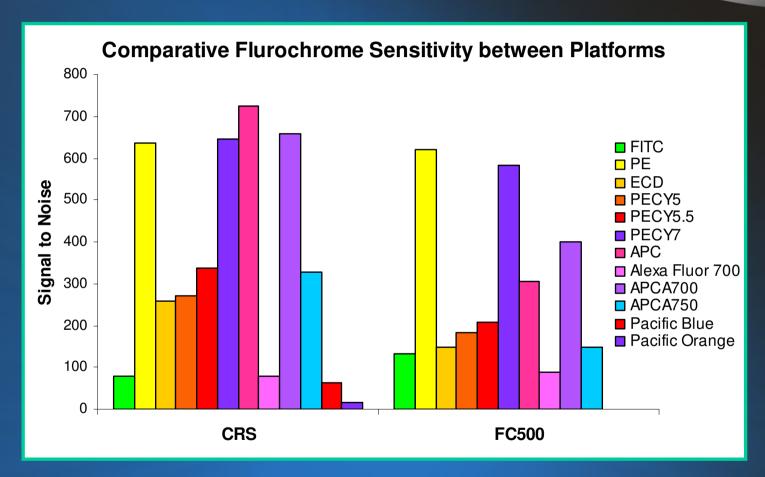
• Réalisation d'un tube pour rechercher des Treg et l'état naïf mémoire des lymphocytes T : CD45R0-FITC/CD45RA-PE/CD62L-ECD/7AAD/CD25-PC7

CD127-APC/CD27-AA700/CD3-AA750/CD4-PB/CD8-KrO



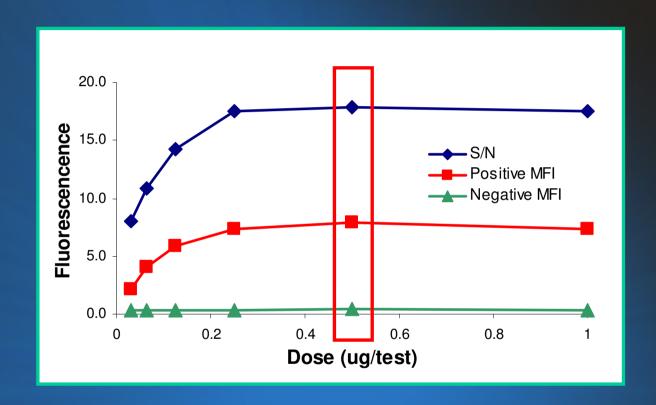
We're better together Un exemple 10 couleurs [CD8] [CD4] [Treg] Naïfs: 44,47% Naiifs: 20,76% [LT] Naïfs: 49,69% CD45 RA PE CD45 RA PE CD45 RA PE Mémoires: 45,58% Mémoires : 20,31% Mémoires : 29,16% CD4 PB CD45 RO FITC CD45 RO FITC CD45 RO FITC [Naïfs] [Naïfs] [Naïfs] CD27-CD62L CD27+ CD62L+ : Naïfs: CD45RA+/R0-CD27-CD62L CD27+ CD62L+ : CD27-CD62L CD27+ CD62L+ : +: N/A 97,70% +: 0.14% 86.46% +:0,04% 98.92% CD62L+ CD27+ (Chattopadhyay et col, Current Prot Immunol, 2005; 12.12.1-15) CD62L ECD CD27-CD27-CD27-CD62L-: N/ CD27+ CD62L-CD62L- : CD27+ CD62L-: CD62L-CD27+ CD62L-: 2,30% 0,97% 2,74% 10,67% 0,07% CD27 AA700 [Mémoires] [Mémoires] [Mémoires] CD27 AA700 CD27 AA700 CD27+ CD62L+ : CD27-CD62L CD27-CD62L CD27+ CD62L+ : CD27-CD62L CD27+ CD62L+ : +:2,62% 70,68% +:3,80% 50,49% +: 2.44% 14,63% CD27-CD27-CD27-CD27+ CD62L-: CD62L-: CD62L-: CD27+ CD62L-: CD62L- : CD27+ CD62L-: 2,09% 24.61% 11,30% 34,41% 11,11% 71,82% CD27 AA700 CD27 AA700 CD27 AA700

Un exemple 10 couleurs



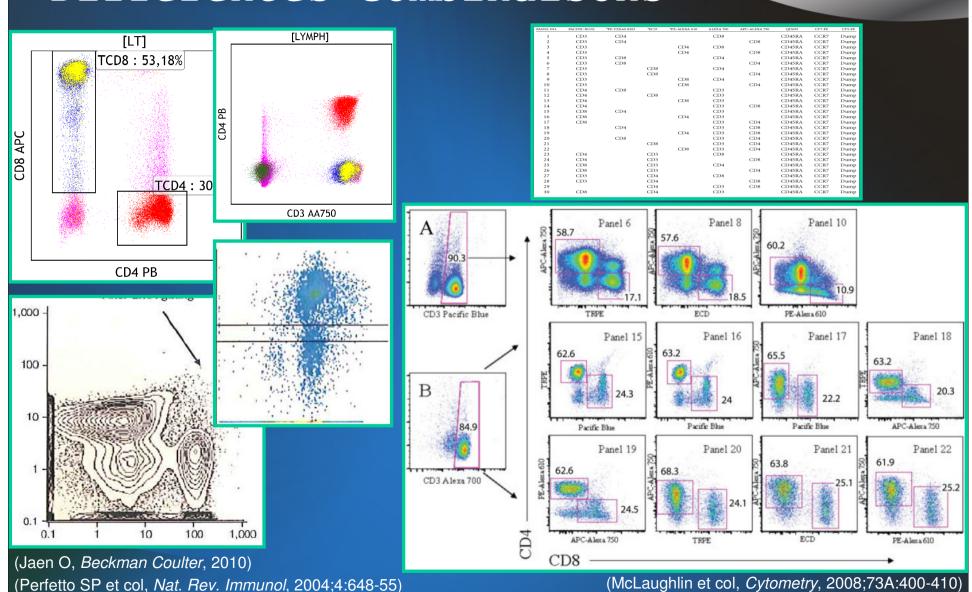
Conclusion

- Multi-couleur n'est pas compliqué si on est prudent et rigoureux
- Méthodologie onéreuse qui peut être simplifiée avec l'acquisition d'expérience
- Gain de temps et d'argent si utilisation d'anticorps de qualité
- Toujours vérifier l'instrument, et les compensations
- Si compensation énorme entre deux détecteurs, pensez à jouer avec les sensibilités
- Penser aux contrôles, éviter le tube contrôle isotypique pour placement des seuils, internes, FMO.
- Témoin négatifs et positifs dans l'expérience comme dans la mise au point
- Outils de ré-analyse dans logiciel comme le Tree Plot ou prism pour rechercher des populations (Perfetto S P et col, Nat Rev Immunol, 2004;4:648-55)


Sensibilité est machine dépendante

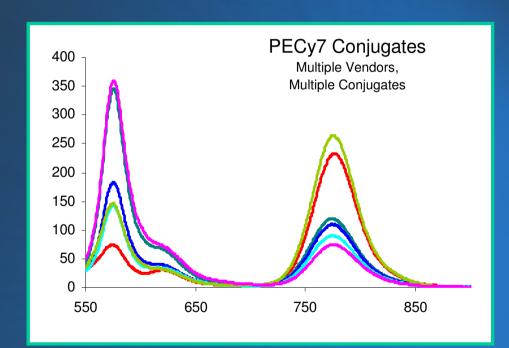
Comparaison séparation cellules CD8- et CD8+

Titration anticorps

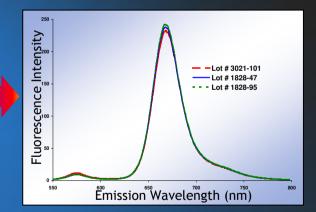


Choix de la dose/volume à saturation

Ne pas vouloir être trop restrictif si soupçon d'une augmentation importante de l'expression



Différentes combinaisons



Variabilité des couplages

Finished Tandem Dye Three Lot Comparison of PC5

